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CONFIDENCE SETS FOR A CHANGE-POINT

David Siegmund

* Summary.

>Several methods are discussed for confidence set estimation of a change-point in a se-

quence of independent observations from completely specified distributions. The method based %

on the likelihood ratio statistic is extended to the case of independent observations from a one

parameter exponential family. Joint confidence sets for the change-point and the parameters

of the exponential family are also considered.

1. Introduction.

Let X1 , X2,. .. . be independent random variables with xl,. . . , having distribution

F anid 3+ 1, . .. , xm having distribution G :0 F. The change-point j, where the distribution

shifts from F to G, is an unknown parameter, to be estimated by a confidence set. In general,

the distributions F and G may be known, completely unknown, or specified up to an unknown

parameter. In this paper I discuss several procedures for the artificial but informative case

of completely specified F and G, and then develop more completely a method based on the

* likelihood ratio statistic for the case where F and G come from a common one parameter

exponential family of distributions. Precedent for the approach taken here is found in Worsley..

(18)and Siegmund (1986).

Section 2 is concerned with known F and G. In addition it is assumed that the sequence

of observations is actually doubly infinite,... x.j, xo,xj,.. . This additional assumption has

little effect if m is large and it is known that j is not close to 1 nor torn, because observations

far from the change-point carry little information about the location of the change-point.

The virtue of the assumption is that it makes j into a location parameter and provides an V

exact ancillary statistic: the class of shift invariant events. Five confidence set estimates are

discussed. Three are studied by Siegmund (1986), in the context of estimating a change-point

7.7 1.



in the drift of Brownian motion. The fourth is essentially the suggestion of Cobb (1978),

and the fifth has smallest expected size among all shift invariant confidence sets. Section 3 % -j

compares the different confidence sets.

Sections 4 and 5 are concerned with the case that F and G are imbedded in a common one .

parameter exponential family, whose parametesr 0 is unknown. Section 4 develops a method

based on the likelihood ratio statistic for obtaining exact confidence sets for j. A new, fairly

simple approximation is suggested for the required probability calculation. The approximation

is illustrated on the coal mining accident data along the lines discussed by Worsley (1986).

Section 5 involves the special case of normal distributions with j denoting a change in the

mean. The likelihood ratio method is extended to give a joint confidence set for j and the

difference between the two means. ',-,-
,. 4%.

2. The Cases of Known F and G. %

Let Z devote the integers and let je Z. Let z,, ne Z be a sequence of independent

random variables with z having the distribution function F or G according as n < j or

n > j. The distributions F and G are assumed known; the change-point j is unknown. Let

P denote the probability measure induced by this model on the space of infinite sequences L
W = (z,, ne Z ). Let o denote the shift operator, i.e., the mapping which takes W = (zn, ne Z)

into orw = (Zn+1, ne Z ). Note that the family {Pj,je Z } is a translation family in the sense

that for any event B and ' Z.

P(B) = Pj(wB) Po(o,-iwB) = Po(oaB).

Let zn = log{dG(zn)/dF(zn)} denote the log likelihood ratio of Xz, and put

S i--z+...+z, (n> 1)

-(zn+.. + zo) (n < -1)

-0 (n=0)

Let , = dP/dPo denote the likelihood function at i. By considering the finite sequence

X,, -N < n < N, and then letting N - oo, one can easily show that t = exp(§,). Under P

% ... .
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the log likelihood process ne ) is a random walk satisfying So =0 and having increments

- S~.-1 with mean f log(dG/dF)dF < 0 for n > 0 and f log(dF/dG)dF > 0 for n < 0.

The maximum likelihood estimator for j is the value " where the process (S, nri Z)

assumes its maximum value. In general this value need not be unique, but to avoid technicalities "

it is assumed to be so in what follows. In the space of the sufficient statistic (., nc Z ), the

sequence Y = S;++ -S;, ic7Z, is ancillary.

In the context of estimating a change-point in the drift of a Brownian motion process,

Siegmund (1986) compares the following three confidence sets for the change-point j. The

first two were discussed earlier by Hinkley (1970, 1972), who, however, made no attempt to

establish their relative efficiency.

(i) Since j- is pivotal, if r = r, is defined by Po(Ii" > r) =a, then 1 = [" - r,j + r]

is a (1 - a) 100% confidence interval.

(ii) Let Ai devote the acceptance region of a size a likelihood ratio test of the hypothesis- ..
that the change-point is j, i.e., Ai = {max, - S, < 77}, where q/ = t satisfies Pi(A,) =

{Po(max>o Sn < q)} 2 = 1 - a. Then the set C 2 of ne Z such that the observed sample point -.. ,.

WEAn is a (1-a) 100% confidence set. Since the log likelihood process (Sn, ne Z ) is in general

multimodal, this confidence set is not in general an interval.

(iii) A modification of the preceding method which always yields an interval is to define

L(R) = min(max) n: m_ rnmax §i -t'

which for suitable ' < r/satisfies

Pj(L < j < R) = Po(L < 0 < R) = 1 - 2P 0(R < 0) - 1 - a.

The next possibility is essentially the suggestion of Cobb (1978). In analogy with Fisher's

(1934) observation that the conditional probability density of the maximum likelihood estima-

tor of a location parameter given the sample spacings, which are ancillary in that case, is the

normalized likelihood function, one may show by a direct calculation that .2.

3 -
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PjGj-j nYi,iCZ) Po(t njYi,icZ) exp (§L;4 n) exp§i), (J)

where job. denotes the observed value of j. Let

P, expOn)/ exPC(i), ne . (2)

(iv) It follows from (1) that a confidence set of conditional coverage probability 1 - a can

be formed as follows. Order the Pn in (2) as P(i) ! P(2) .... Construct the set C4 by putting

the index n, corresponding to P(i) in C4 and continuing to add points n2 ,.., nA corresponding

to P(2)," 'P( as long as 'j<A P(t) < 1 - a. Note that for a Bayesian with a uniform prior on

Pn pr(j =nixii Z)

and hence the set C4 is a highest posterior probability credible set for j. In fact, even without

the explicit evaluation in (1), one knows from a general theorem of Stein (1965) and Hora and

Buehler (1966) that the highhest posterior credible set for j is also a confidence set.

(v) One can also obtain an unconditional confidence set from the formal posterior prob-

abilities (p,, ne Z) in (2) as follows: let c be such that

} = exp c =1- (3) "

and Cs = {n : p, > c}. Then Cs is a (I - a) 100% confidence set, which according to a general

theorem of Hooper (1982) or alternatively by a simple Neyman-Pearson argument has smallest WIN

expected size among all shift equivariant confidence sets.

V.

Remarks. The confidence sets (ii), (iv), and (v) all order the parameter values for inclusion

according to the value of the likelihood function. Where they disagree is where to draw the %.

line between inclusion and exclusion. For those who strongly prefer a confidence interval to a

a4
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possibly disconnected confidence set, (iii) appears to be a reasonable modification of (ii). It is

possible to give analogous modifications of (iv) and (v).

Of these five confidence sets, all except for (iv) require computation of a sampling distri-

bution. Approximations are suggested in the following section.

3. Comparisons. 

.

The purpose of this section is to compare the expected size of the various confidence sets '"

-.. -
proposed in Section 2. Since the case of known G and F in artificially simple and our main goal

is insight into the case where G and F contain unknown nuisance parameters, there seems to

be little harm in simplifying the technical problems somewhat by assuming that F is N(O, 1)

and G is N(6, 1) for a known 6 > 0.

Siegmund (1986) considers the computationally simpler case of a Brownian motion process

and shows that the length of the confidence interval defined in (i) is substantially longer than

the expected size of the confidence sets in (ii) and (iii).

In the present context it can be shown as a - 0 that the expected sizes of the confidence %

sets in (ii) - (v) are all - 48- 2 log a-, whereas the length of the interval in (i) is -- 8- -2 log a-.

Hence the confidence interval C1 defined in (i) appears not to be competitive with the others

and will not be considered further.

Although Siegmund's (1986) comparison of (ii) and (iii) favors (ii), the difference is not

large. In fact there is a transcription error in passing from the first to the second line of the

display following (3.15) of Siegmund (1986), and consequently the difference in the numerical

example between methods (ii) and (iii) is smaller than stated there. Since one suspects that
the rapid fluctuations of Brownian motion may account for some of that difference, and since

#6 (iii) is the only remaining interval estimate and is a surrogate for interval modifications of (iv)

and (v), it seems reasonable to make a comparison of (ii) and (iii) in the present discrete time A -

setting. Theorem 1 below gives asymptotic expansions as a - 0 of the expected size of the

confidence sets (ii) and (iii).

It seems difficult to give comparably precise expansions for (iv) and (v). Hence (ii), ."-

. 5



(iv), and (v) are compared below in a Monte Carlo experiment, which also shows that the

approximations given in Theorem 1 are reasonably accurate.

We begin with approximations for the coverage probability of (ii) and (iii). Let 4 be the

standard normal distribution function and --

v(x) = 2z- 2 exp }2 n-lD -,/nl2 (z > 0). (4)

For computational purposes it usually suffices to use the small x approximation (Siegmund,

1985, p. 219)

v(x) =exp(-px) + o(x2 ) (X-- 0), (5)

where p S- .583. For the normally distributed x,, ne Z under consideration here S1 = V
b(n5/2 - Sn),n = 0,1,..., where S,, = x, + ... + x,,. It follows from a classical result of

Cram~r (cf. Siegmund, 1985, (8.49)) that -
.

( max§n, > -(b)exp(-n) (,* co) (6),n>0-- "

and hence by (5) for Aj defined in (ii) above

P,(A,) (1 - exp(-q - p8)} 2. (7) ..'..

By conditioning on maxn>0 Sn, one may show for R defined in (iii),

I.I

-vbexp(-i7')Eojexp max Sn)

* .. ,

So co. It is possible to compute the expectation on the right band side of (8) numerically or

give a small 5 expansion analogous to (5), but for our purposes it seems adequate to pretend

{ ( %e
that (6) is an equality, which leads to the approximation .-..

} W --- oo It s pssile o coput th expctaionon he rghthan sid of(8)numricaly r a" -

6.'-

_________ive___smal___expansionanalogous__to____,_butforourpurposes__tseems__adequatetopretend ...-- .- "



Pi (0.. . . .~..-- X[L R]) -52ep-7 b 1-ep-8/ 9

The folwn hoe ie nasmttcepnina t-- fteepce ieo

Thfolntheorem giv2betes aofnc symtti dexanin as a [L, R]o the cniexpced iztervof

defined in (iii). As t7 - oo

EiIC2i 2[2,7/62J + 4/52

-' f1j {2Po(M > x) - P02(M > x)}jdx + o(l),

and as?7 -oo

Ei(R - L) =2L2t7'/8
21 + 452

-48-' f j Po(Medy) {2P(M > x + y) - P2(M > X + ,)}jdx + o(i).

A proof is sketched in anappendix.

To obtain easily evaluated approximations to the integrals appearing in these expressions,

one may again pretend that (6) is an equality and use (5). This leads to

E1IC 21 2 22,1/2 + 252(2 - 4e- 8  e" 8  (10)

and

W E,(R - L) ': 2[2,1/2 + 28 (2 - 4e-P6 + 3e 2 'P8 - 2eP/) (11)

Table 1 contains some numerical examples. It indicates that there is essentially no dif-

% ference between the expected size of the confidence sets (ii) and (iii). On the basis of these

1 7



results a statistician who strongly prefers a confidence interval to the generally disconnected

likelihood ratio confidence set should feel comfortable in imposing that constraint.

Table I.-.. -.

Expected Size of Confidence Sets (ii) and (iii)

a q ,/ (7) EoIC 2 1 (10) 17' (9) Eo(R - L) (11)

.1 0.7 2.56 19.1 2.18 17.9

.1 1.0 2.39 8.2 2.08 9.2 .,..

.05 0.7 3.27 25.1 2.88 23.9

.05 1.0 3.09 12.2 2.78 11.2

.01 0.7 4.89 37.1 4.49 37.9

.01 1.0 4.71 18.2 4.39 17.2

In the present context of completely specified distributions there is no sampling theory

to develop in order to use the confidence set (iv). However, it seems a difficult problem to give

a reasonable approximation for the related set defined in (v). A crude approximation to (3)

which might be used as the first step in an iterative numerical or Monte Carlo scheme is to

replace S,, by a Browni,,a motion process W(t) with drift -(5 2 /2)sgn(t) and variance 82 and

replace the sum in (3) by an integral. One easily sees that the integral over [0, oo) has the

distribution given by Pollak and Siegmund (1985, Proposition 3). This can be convolved with -

itself to obtain pr[foo exp{*(t)}dt < c-1 ] = 26-1V c exp(-4c/62 )Ki(26- 1 ), where K, is

the modified Bessel function of the second kind. "

Table 2 reports the results of 1000 repetition Monte Carlo experiment with m = 100

and j = 50 to compare the confidence sets C2 ,C 4 , and Cs. It confirms that the analytic

approximation for the expected size of C 2 given in Theorem 1 is reasonably accurate and

shows that all three confidence sets have about the same expected size.

N 8%~~ %. '% %."
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Table 2.

Monte Carlo Comparison of C2 , C4, and Cs

C2  C4  CS

a (nominal) 6 & EoIC 21 & EoIC 41 c & EoICs

.10 .07 .090 18.8 .084 19.5 .010 .092 19.3

.10 1.0 .098 9.6 .085 10.3 .022 .113 9.4

.05 0.7 .041 24.6 .040 25.2 .005 .047 26.0

.05 1.0 .048 12.6 .037 13.2 .011 .052 12.6

Although the confidence sets defined in (ii)-(iv) perform similarly on the average, they can

treat individual sets of data differently. Figure 1 displays two simulated log likelihoods with

m = 101,j = 50, and 6 = 0.7. The horizontal line defines the 95% likelihood ratio confidence " " -

set (ii). In accordance with the approximation (7) it is drawn 3.27 units below the maximum

of the log likelihood function.

In the 1,,per part of Figure 1 the one major peak of the log likelihood is fairly sharp

with the consequence that all the confidence sets are about one half their expected size of 25.

The confidence interval defined in (iii) has one point less on each end than the likelihood ratio

confidence set. The formal Bayes posterior set, C4, makes a smaller adaptation to the peaked

log likelihood; it contains four more points, including the local maximum at 63. The confidence

set CS is the same as the likelihood ratio confidence set.

The lower part of Figure 1 contains a comparatively fiat log likelihood with two distinct %

, peaks. The likelihood ratio confidence set contains 33 points. The interval modification is now

slightly larger because it contains points of relatively low likelihood: 44, 45, 56-58. Again the ",

* formal Bayes posterior set adapts less to the departure of the log likelihood from its expected

shape and this time contains four fewer points than the likelihood ratio confidence set.
C.

9
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In general, the interval modification (iii) is usually slightly shorter than the likelihood ratio oil

confidence set but can be considerably larger. The formal Bayes posterior set is usually larger Id.%

than the likelihood ratio when both sets are small and smaller when both sets are large. This

suggests that there may be recognizable subsets making the conditional coverage probability

of the likelihood ratio set differ from its nominal value. The confidence set CS can look rather

foolish conditionally. If all the pi are very small and about equal, it can deliver a small, or

perhaps empty confidence set while the other methods recognize the data as uninformative

and yield large confidence sets. Presumably this occurs with small probability.

Overall the evidence given here does not seem persuasive for choosing among the confi-

dence sets (ii) - (v). A possible conclusion is that in more complex problems one may reasonably

use whichever method seems most easily adpated to the problem ;-t hand. Whe the distribu-U-.,

tions F and G are unknown, but can be imbedded in a common exponential family, one can use

a conditioning argument to obtain exact likelihood ratio confidence sets. This is the subject

of the next section.

4. The Likelihood Ratio Method for an Exponential Family. "-U'

Now suppose that F and G can be imbedded in an exponential family of the form

.-'U

dFo(x) = exp{Px - 0(0))dFo(x)

relative to some fixed distribution F0 , which without loss of generality can be standardized

to have mean 0 and variance 1. Thus for some unknown 00 # 0I and jc{1,..., m}, xi,.. .,.

have distribution Fs. and xj+I,..., Zm have distribution Fa1. The probability on the space of

x,,..., x,. will be denoted by pr, with the dependence on j, 0o, and 01 suppressed.

Several writers, e.g., Davies (1977), Siegmund (1986), and Worsley (1986), have observed

that one can extend the likelihood ratio method (ii) of Section 2 to obtain a confidence set

for j in the presence of the unknown nuisance parameters 00, 01 as follows. Let H(X) =

sup{Ox- V,(0)},S.z=z + .+x, and

An,= nH(n-Sn) + (m n)H{(m - n)-'(S- S.)}. (12)

,~~~................-.....-..................... . .. . . . . ... .,-
,., ,..- -.,¢ .< .'..-.-...-.-%:..'.:..-.-." .- .v ' - . '..-.-.% %..-....'. .... . . "...,
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The likelihood ratio test of the hypothesis that the change-point is j has acceptance region of ..

the form _,

Aj = max A), - Ai m 
< k

n" % . ,.i

By sufficiency the conditionalprobability of Ai given (S,, S.) does not depend on go, 81. Hence

if one chooses k = k(C1 , C2) so that

pr(AijS, = C1,Sm= 2) = 1- a

for all C1, C, then the set of values j which are accepted by the test is a (1 - c) 100% confidence

set.

It is not actually necessary to solve for k(Cl, C) in order to determine the confidence set. i.,

Given Si and S,,, Aj,,, is constant, and hence the confidence set is most easily determined as '

the set of j for which

pr maxAn, : (max A_<b.ISiiSm 1- a. (13)

nP n

An approximation for this conditional probability which seems adequate for many cases is

given below. F.

Note that one might also define A, as the acceptance region of the likelihood ratio test in

the conditional model given S,,. The unconditional test is often simpler analytically, but the .
conditional one may turn out to the preferable. In the simplest case of a normal distribution

with mean 0 and variance 1 there is no difference between the tests. Similarly one could

substitute Pettitt's (1980) test with acceptance region of the form

=max I(nS./m - Sn)l - I(jS./m - S,)l < aj. (14) ____

Given (S,, Sn) the random variables maxn<j An,m and maxj<n<m An,m are conditionally.

independent, and hence the left hand side of (13) is of the form

12

e. . . ... , . . . . . . . .. . ... .. . . .*'* ,
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prma n ,,7 (lj .p max An,ma < ajSj, SL (15) .1-%e

These two probabilities present similar computational problems, so it suffices to consider the

second one, or equivalently --

4. ",. .

' In the special case that F# is the normal distribution with mean 0 and variance , the - -"

~~probability (16) equals"" €

pr [ max (nS./m - SS). m

I!nm2n(1 n/m) '_'

for which Siegmund (1986) gives an approximation under the assumptions that j, a, and C are .

all proportional to m, and -

c' 2a - /y1-jm}(18) [[

h ~ ~is asymptotically a positive multiple of m as m co. A somewhat simpler approximation is ',

~obtained by assuming that c 2 o(m). For ease of reference we record the result as Theorem "..2..'

4'.'. ,,

Theorem 2. Let z, . .. zm be independent standard normal random variables and Sn=

x, +..+ zn. Let min(j, m - j), a, and be proportional to m as m -+ co. Suppose C2 defined""".

by (18) diverges to +o but C2 = o~r). Then the probability (17) is ','-

, ,.'

pr.~ <[C{j(1 - jm) exp(-c /2) (19)

as m -- o, where v is defined in (4) and given approximately by (5). .,eTeFrom the simulations reported in Table 6 of Siegmund (1986) one can see that (19) i c o d

is reasonably accurate for the range of j, m, and considered there. Presumably it is less .,
accurate for larger c and/or smaller , but it seems adequate for many cases of interest.

N ~13 .4

. . . . . .4".°.
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According to the approximations (19) and (5) the confidence set defined by (13) is the e

set of all i such that %

1 - exp(-.583[2A,,,,/{i(1 - i/m)]1/2 - (max A,, - Ai,,,,))}< 1 - C. (20)

Even when one questions the accuracy of (19) or when the data are not normal, the central limit

theorem suggests the use of (20) as a first approximation. A better approximation, simulation,

or numerical methods can be used to decide whether values of i on the boderline according to

(20) should be included in or excluded from the confidence set.

Note also the formal similarity between (19) and (6). To the extent that {i(I -i/m)}I/2 is

nearly constant over the values i of interest, e.g., when the likelihood ratio statistic is sharply

peaked and hence the confidence set is small, (20) shows that the confidence set consists of

those i for which Ai,m is within some distance of maxn A.,,, which can be displayed graphically

as in Section 2.

Figure 2 shows the log likelihood ratio statistic and the approximate cutoff for a 95%

confidence set for the same simulated data as in Figure 1. Qualitatively the cases of known 1%6

and unknown 5 look quite similar. Usually the confidence set is larger in the case of unknown i",- M'

6, and this is indeed so in the lower plot. However, the reverse is true in the upper plot,

presumably because the procedure in effect estimates 5 and then acts as if the, in this case

large, estimated value is the true one.

Returning to the general exponential family, if we let a = mao and condition on Sm - -

= m20, we see from (12) that (maxj<n<m An,^ > a) = U .[{S. > mb2(n/m)} U {S. < .

mbi(n/m)}], :

where bi(t) < b2(t),0 < t < 1, are the solutions of

tH{t-1bj(t)} + (1 - t)H[(1 - t)- 1{60 - b,(t)}] = ao. (21)

14 __
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Usually one is interested in evaluating (16) in cases where Sj - is fairly close to one of the %

boundary curves mbl(j/m) or mb2(j/m). Thus the probability of crossing the other can be

neglected, and it seems reasonable to develop an approximation in which the distance from {

to the relevant curve is small in some sense. See Figure 3. Our problem reduces to approximate

evaluation of probabilities like

pr[Sj+i > mb{(j + i)/m} for some i < m-jjS, = C1,S, = 21. (22)

The mathematically convenient interpretation of the condition that Mb 2 (j/m) - be

small is that it be O(/m'-).

Siegmund (1985,1986) develops a method for approximating boundary crossing proba-

bilities which can be adapted to the present context. A suitable result is given in Appendix

B.

As an illustration we consider the British coal mining accident data of Maguire, Pearson,

and Wynn (1952), as extended and corrected by Jarrett (1979). Worsley (1986) has analysed

the original data and determined the likelihood ratio confidence set by numerical computation

of (15).

The data are intervals in days between accidents in British coal mines in which at least

ten deaths occurred. Jarrett's (1979) data involve m = 190 intervals from 15 March, 1851 to

22 March, 1962, a period of 40,549 days. Under the assumption that the intervals yr,.... Y,

are independent and exponentially distributed with a change after the j-th observation in the

mean time between accidents, we shall determine a likelihood ratio confidence set for j.

The likelihood ratio statistic is maxn An,m maxn[m log(Wm/m) - n log(Wn/n) - (m -

n) log{(W, - Wn)/(m - n)}], where Wn = y, +.. + yn. For Jarrett's data the maximum value

equals 35.6 and is assumed at n = 124 in the year 1890. the approximation (20) gives the set

{116, 117,.. .,128, 133} as a 95% confidence set for the change-point. This corresponds to the

nterval from 1887 to 1893 together with an isolated ppoint in 1897. One may want to use the

presumably more accurate probability approximation given in Theorem 3 in Appendix B to

check some of the borderline cases.

• .. ~
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For example, for j =129, A, 3 = 32.4, so (20) yields .961, and 129 is not included in the.-

confidence set. From (21) with a = mao = 35.6 one easily calculates the ingredients to apply

.6,wihconfirms that 129 should be excluded from the confidence set. Note that this

apprximaionand the normal approximation, (20), are reasonably consistent, although the

nomlapproximation involves two equal factors while this one contains two unequal factors,

onesmalerand one larger than in the normal approximation. For j = 128 the approximation

by means of Theorem 3 for the second factor in (15) is 1 - .057 = .943, and hence 128 is

included in the confidence set regardless of the value of the first factor. After examining two or*..

three values of i, one quickly concludes that the approximation of Theorem 3 yields the sameI confidence set as the crude normal approximation.

Application of (20) to the original Maguire, Pearson, and Wynn (1952) data gives pre-

cisely the same confidence set which Worsley computed numerically. However, because of

discrepancies between the two data sets, the years covered by the two coonfidence sets are

slightly different.

Raferty and Akman (1986) give a flat prior Bayesian analysis of these data. It appears%

from their calculations and Figure that a highest posterior set estimate for the change-point is

the same as the confidence set computed here. Presumable such a postesrior set is, under some

general conditions, approximately a confidence set for large m, but the elegant exact relation of

(1) and (2) is no longer valid. It would be interesting to give some precise asymptotic results,

which would serve to extend the method (iv) in Section 2 to the case of unknown nuisance

parameters.

Cobb (1978) has suggested an alternative extension of method (iv) to deal with nuisance

parameters, but it contains some arbitrary features which may make it difficult to implement

%J with small or moderate sample sizes.

5. Joint Confidence Sets. .

The likelihood ratio method can also be adapted to give joint confidence sets for the

change-point j and some function b of the parameters 90 and 01. In this section we considerb%

% 18P



the simple case of normally distributed xi having mean 00 or 01 according as 1 < i < j or . ,

j < i < m and variance one, and take 5 = 01 - 00.

The acceptance region of the likelihood ratio test of the hypothesis that the parameters

are j and 5 is

A,, 6  [sup Ai,m - 8{jS m /m - Sj -j(1 -j/m)/2} < C2/2],

where Aim = (iS,/rrM - S,)2/{2(1 - i/m)} and c - c(j, 8) is chosen to satisfy

,.,.
".4 pr(A, 8 ) 1

for all j and 6. Note that

sup Ai,m - S{jSm/m - Sj - 2-6j(1 - j/m)} (23)

{jS/m - S - 5j(1 - j/m)} 2

Ui m25(1 -ji[(1 - j/m)

and since the first difference on the right hand side is necessasrily non-negative, one obtains

pr(A6) = pr[IjSr/m - Si - 8j(1 - j/m)I > c{j(1 - j/M)}1/2]

+E[pr(A, 6 IjSm/m - Si); IJiS,/m - S - 5j(1 - j/m)l < c{j(1 - j/m))1/2]. (24)

The first term on the right hand side of (24) is exactly 2{1 - 4(c)}. According to Theorem

2

pr(A, 6 IjSm/m - s ="
2r { - bj(1 - /M)} 2I

2v [C/(( - iM)] exp -c /2 + ]
2j(1 - j/m)

provided the exponent diverges more slowly than m as m -- oo. Substitution of this approxi-

mation into (24) yields

pr(A ,6) 2{1 - -(c)} + 2(c) fv[8 + z/{j(l - j/m)}'/ 2 ]dz

"5 2{1 - O(c)} + 4v(6)cp(c), (25)

.. Z- Z*,
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if we assume that c/{j(1 - j/m)}112 is small. Here Vo and -0 are the standard normal density

and distribution function respectively.

Using (25) one can easily find an approximate confidence set by trial and error. Given i, ,q i

one sets 6 equal to the estimator 6, = (iS,,/m - Si)/{i(1 - i/m)) and finds the value of c for

which (25) equals a. Thus by (23) one finds whether that i and some 5 are in the confidence

set. Then one iteratively finds upper and lower bounds on 5 for that particular value of i. In

principle this must be repeated for each i.

An extension of this method to non-normal exponential families requires consideration of

special cases. The generalization of (23), in almost obvious notation, is

sup Ai,., - Ai,,() L.
= (S U A rn - A m) +-A ~ A , n 6 }

If 6 is a function of the difference in the natural parameters of the exponential family, e.g. if the

parent populations are Poisson and 6 is the ratio of their means, by computing probabilities I.

conditionally given Smn, one obtains a statistic whose distribution is parameterized by 6. On

the other hand, if the parent distributions are exponential and 6 is again the ratio of their - -. ,

means, because of invariance of the two sample problem under common changes of scale, the

unconditional model and unconditional distribution of Ai,, - Ai,,,(6) are appropriate.

The sampling theory seems rather complicated. Presumably a normal approximation

using (25) suffices when m is large enough, but this needs to be investigated.
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APPENDIX A _a

Informal Proof of Theorem 1.

We consider only the confidence interval [L, R]. The proof for the likelihood ratio confi-

dence set is similar and somewhat simpler. Since the confidence set is equivariant, it suffices

to consider the case j = 0. To simplify the notation we shall write pr and E instead of Po and

E0 , q instead of n', Sn instead of S, and take 6= 1. Recall that M = sup_>o Sn. '

For arbitrary no = 1,2,...

aJ*

E(R'- L) = pr(L < n < R) = pr(L < 0 < R) + 2Zpr(L < n < R)
-00 %

-F 00

=pr(L < 0 < R) + 2 {pr(R > n) - pr(L > n)} '.

1l+ 2 -pr(R :n)+ oq'_ t )  as q oo"'"

00 no'.--J

- l+2no+2 E pr(R> n)-2Z{1-pr(R> n))+o(l). (Al)

no+1 1

For positive n, by the definition of R .-.

pr(R n) =pr sup S supS + 7
i<n i>n

- f p o~pr {SncdC, max(Si - Sn)cdY} y.
4 -,qO)xfoO~O)

xpr (max Si :_ 17+ C+YISn = pr maxSi <+7+ .+..<,: i :5

f pr(SncdC)pr(Medy)pr mO - pr(M -
-.,- o)X[ooo) (0 i< -

- pr(Sne - q + dx)pr(Medy)pr a Si !5 + YS =x - -< .'-'.'..
f- f{o,00)X[o,0o) 0! -!, "..n.

"F, Let no = 1271J and k =n - no, so

21 a
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pr($Ie - Y + dx) p I (no + k)dx.

1 (no + k)"' 3-

It may be shown that the contribution to the two series in (Al) from values of x and k outside

the range Jkj < ,72/3, Iz + k/21 < t72/s is negligible, and inside this range

pr max S > X + YS.+k = -7 + x -pr(M > X+y)
(O<ino+k

converges uniformly to 0. Hence for the purpose of evaluating (Al) asymptotically, pr(R >

no + k) may be replaced by

j j o no+ k)/ (no+k)-ldx pr(Mcdy){I -2pr(M > x+y) +pr 2 (M> x y)}.

fo fo (n + kc) 1/

For k = 0 this integral converges to 1/2. The terms in (Al) for k 1 ±1, ±2,... may be paired,

and after some calculation one obtains

"pr(R > no + k) - E{i - pr(R > no + k)} -1/2
k>1 k<O

-. -+ - - 2'k/(no + k)

k>1

200
n- j(2-1/n pr(Medy){2pr(M > x + y)

-pr 2 (M > x + y)}dx + o(1).
%?I~

A Taylor series expansion, approximation of Riemann sums by integrals, and substitution of

the result back into (Al) complete the informal proof of Theorem 1.

,..'

,p.<
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APPENDIX B

4%

Boundary Crossing Probabilities.

This appendix is concerned with approximations to boundary crossing probabilities like

(22). The notation used here is independent of the body of the paper.

Let Z 1 , z 2 ,... be independent random variables with distribution function of the form

dFo(x) = exp{Oz - tP(O)}dFo(x) (A2)

with Fo standardized to have mean 0 and variance 1. Let Sn = x1 + + n. To emphasize

dependence of probabilities and expectations on 0 we write prS and Eg.

Let b0 > 0, b(O) = 0, and define

,.- -i.

T = inf{n Sn > bo + rnb(n/m)}.

We seek approximations as m -- oo for .

pro(T < molSmo = moo),

where m0 = mto for some fixed to > 0. We assume that Co < b(to)/to and o < b(t)/t uniformly

on compact subsets of [0, to). Let cl = b'(0), c2 = b"(O)/2. Note that Co < c, and locally near

* 0

mb(n/m) = cin + can2 /m + 0(n"/m 2). (A3)

Define Oo by ik'(0o) = Co and 01 > 00 by

I(0) - o(o) = C1(0 1 - 0o). (A4)

Let C, = o'(6i),? tp"(0,) (i = 0, 1), and A = 01 - 00. -"."

Let t+(tj)(t_(Y7)) = inf{n : S, - in > (:5)0}, and put " -".

23
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0

v+= preo{t+(cl) - oo}pr 6 1{t_(c1) = +oo}/{A( 1 - cl)}. (A5)

Theorem 3. Assume that for all 0, for all sufficiently large n the n-fold convolution of F$

has an integrable characteristic function. Suppose b0 -* o as m - oo and b0  O(V/i). Then .- -

pro(T < molSmo = moo)

i/+ exp[-Abo - m-'bg( 1 - c1)-2 {( 1 - 0)2 /(2ao) + Ac 2}]. (A6)

In order to evaluate the constant v+ defined in (A5) it may be helpful to use the local

expansion for small cl and 00

/ exp(-p ) + o(A2), (A7)

=S
where p+~ = EoS+ 1(o)/(2ES,+(o)). See Siegmund (1985, Chapter X) for a justification and

method for computing p+ numerically. In the normal case this is the approximation (5). In

the exponential case the standardized generating distribution dFo(x) equals either exp(-x +

1)dx (x > -1) or exp(x- 1)dx (x < 1), and the approximation (A7) is exp(-A) or exp(-A/3)

respectively. These approximations were used in the numerical example in Section 4.

If b0 = o(./'m), the right hand side of (A6) is just Cram6r's classical approximation to the

probability of ultimate ruin, as follows. Suppose b(t) = cl,t, and consider pro0 (T < o). By

(A2) and (A4) the likelihood ratio of xl,..., x, under 0o relative to 01 is exp{-A(S, - cin)}.

Hence by Wald's likelihood ratio identity

pr 8 0(T < oo)= exp(-Abo)E, exp{-A(ST - bo - cT)}, (A8)

and by the renewal theorem

lim E6 , exp{-A(ST -bo - ciT)} v+,b0 O -o"oP

b%-.0
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* .-. .-,,< m

where v+ is defined in (At). See, for example, Siegmund (1985, Chapter VIII) for details.

Hence (A6) has the interpretation that if b0 = o(vr-), asymptotically the curvature of the -

boundary plays no role and the conditional probability given Sm = m0 0 is effectively the - ,

unconditional probability Pri0 having the drift f = Te(o).'

In general the first term multiplying rb on the right hand side of (A6) corrects for

the fact that we have a conditional, not an unconditios testiilty and the second corrects

for the curvature in b(t). In fact, by (A3) one can modify (A8) to read

exp(Abo)pr 8o(T < ino) " - . .

SEe(exp[-zm{ST - bo - rb(T/m)} - Ac 2 T 2/m + O(T3 /mn)]; T < io).-

It is easy to see that boT --- ( z - cl)I in pr 0 -probability, and by Theorem 9.45 of Siegmund '_

(1985) the limiting distribution of the excess over the boundary, ST - bo - rb(T/m), is the , ., .

same as in the linear case. This explains the correction for non-linearity. The correction to .

account for the conditional probability is obtained by a modification of the proof of Theorem

8.72 of Siegmund (1985). The details are much more complicated and have been omitted.

To illustrate the approximation (A6) suppose that Y,-.., 3,rn are independent standard ._,,

exponential, W = 3/i + ... + yn, and consider Pettitt's test with acceptance region (14), or to . .

emphasize the invariance of the exponential scale parameter ..'

'. 4 4

From the theorem one obtains the following approximations:

pr{ 0max (i -Wi+xo) > a- IjiI--jo, W mi = o}"'."

"" exp[-A(bo + 1/3) -2-
1 b3A 2 /{(m"0 J;zj\:l :- j)-.1

where bo = a - (1 - yo/ o), +o = -J(t - o/ o)/(m - j), 00 = + /(l - 'o) < 0, a d 0, > 0 ., .

satisfies 
*'- -+

I,

• o .', , , ~ p o ,, .- -. . O -o .- .". % . - ,. , ,. . • .. . , . . . - - % -,% % . % ,% * % , 
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"

p 
- "  

.,.YJ ? -j 1 i, . . %) ' - J.-= . ).1 . I.) , " .I4.N .J.- .=W .u.W w rI .- .JN " J~ -p -Jcji.-, =

i- '-. " ..

$- log(1 + 01) = 0o - log(1 + 0o);

pr {max(s-W/o)>ajW,= jyo,W. =m mzo} --- exp{-A(bo + 1) -2-'b /

where bo = a - j(1 - ylo/xo), Co = -(1y- o/xo), Oo = o/(1 + eo) < 0, and 01 > 0 satisfies .

o1 + log(i - o1) = 0o + log(1 - 0o).

The local expansion (A7) for z,+ is used in both these approximations. The analogous approxi-

mations for the likelihod ratio test are similar but slightly more complicated since they involve

both the first and second derivatives of the boundary curve b(t) at t = jm, which are easily .

obtained from (21).

If we invert the Pettitt test to obtain a 95% confidence set for a change-point in the coal

mining accident data, we find the same confidence set as in Section 4, with one exception. The - -"

attained significance level of j = 129 is .039 + .014 > .05, so j = 129, corresponding to the -

year 1894 is included in the confidence set.

"-

- .%°°

..

a% a.

'.'. - a.
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